Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889711

RESUMO

La2(Zr0.7Ce0.3)2O7 has been regarded as an ideal candidate for the next generation of thermal barrier coatings (TBCs) due to its prominent superiority. In this paper, the nano-sized La2(Zr0.7Ce0.3)2O7 was synthesized using two different synthetic routes: sol-gel and hydrothermal processes. Various techniques were utilized to assess the differences in the relevant thermophysical properties created by the different synthetic methods. According to the investigations, both samples exhibited pyrochlore structures with an excellent thermal stability. The sample synthesized via the hydrothermal method showed a more uniform particle size and morphology than that obtained through the sol-gel technique. The former also possessed a better sinter-resistance property, a more outstanding TEC (thermal expansion coefficient) and thermal conductivity, and a larger activation energy for crystal growth than the latter. The micro-strain of both samples showed an interesting change as the temperature increased, and 1200 °C was the turning point. Additionally, relative mechanisms were discussed in detail.

2.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614690

RESUMO

Self-propagating high-temperature synthesis (SHS) is a good way to prepare ZrB2-ZrC/metal cermet composites. In this work, ZrB2-ZrC/Ni cermet composites with various Ni contents were successfully fabricated by SHS using the Ni-Zr-B4C system. The effects of Ni content and particle size of the B4C powder on the SHS reaction were investigated. The results indicated that with an increase in Ni content, the adiabatic temperature, maximum combustion temperature, ignition delay time, and ceramic particle size in the product all showed a gradually decreasing trend. The SHS products and the ignition of the SHS reactions were significantly dependent on the B4C particle size. The formation mechanism of ZrB2 and ZrC during SHS from the Ni-Zr-B4C system was proposed based on the combustion wave quenching experiment.

3.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771991

RESUMO

The reaction mechanism of ZrB2-ZrC formation in a 30% Ni-Zr-B4C system under argon was revealed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the reaction mechanism in the Ni-Zr-B4C system was complex. Initially, NixZry and NixBy intermetallics were formed via solid-state diffusion reactions between Ni, B4C and Zr. Then, the eutectic reaction between Ni2B and Ni4B3 lead to the formation of Ni-B liquid. The free C atoms dissolved into the Ni-B liquid to form a Ni-B-C ternary liquid, and then part of the Zr powder dissolved into the surrounding Ni-B-C ternary liquid to form Ni-Zr-B-C quaternary liquid. Finally, ZrB2 and ZrC formed and precipitated out of the saturated liquid. The eutectic liquid plays an important role during the formation of ZrB2-ZrC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...